Enhanced Unsupervised Graph Embedding via Hierarchical Graph Convolution Network
نویسندگان
چکیده
منابع مشابه
Projective Unsupervised Flexible Embedding with Optimal Graph
Graph based dimensionality reduction techniques have been successfully applied to clustering and classification tasks. The fundamental basis of these algorithms is the constructed graph which dominates their performance. Usually, the graph is defined by the input affinity matrix. However, the affinity matrix is sub-optimal for dimension reduction as there is much noise in the data. To address t...
متن کاملGraph Augmentation via Metric Embedding
Kleinberg [17] proposed in 2000 the first random graph model achieving to reproduce small world navigability, i.e. the ability to greedily discover polylogarithmic routes between any pair of nodes in a graph, with only a partial knowledge of distances. Following this seminal work, a major challenge was to extend this model to larger classes of graphs than regular meshes, introducing the concept...
متن کاملGraph Kernels via Functional Embedding
We propose a representation of graph as a functional object derived from the power iteration of the underlying adjacency matrix. The proposed functional representation is a graph invariant, i.e., the functional remains unchanged under any reordering of the vertices. This property eliminates the difficulty of handling exponentially many isomorphic forms. Bhattacharyya kernel constructed between ...
متن کاملGene Function Prediction via Discriminative Graph Embedding
Gene function has been a subject of interest but it is far from fully understood. It is known that some genes have certain functions but it is not clear whether those are all the functions they have. It is a recent trend to use different means to predict gene functions; one of them is to use computational methods on large data sets. Different types of information are used in computational metho...
متن کاملEntropic Graph Embedding via Multivariate Degree Distributions
Although there are many existing alternative methods for using structural characterizations of undirected graphs for embedding, clustering and classification problems, there is relatively little literature aimed at dealing with such problems for directed graphs. In this paper we present a novel method for characterizing graph structure that can be used to embed directed graphs into a feature sp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2020
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2020/5702519